In mathematics, a partition of a set X is a division of X into non-overlapping and non-empty "parts" or "blocks" or "cells" that cover all of X. More formally, these "cells" are both collectively exhaustive and mutually exclusive with respect to the set being partitioned.
Contents |
A partition of a set X is a set of nonempty subsets of X such that every element x in X is in exactly one of these subsets.
Equivalently, a set P is a partition of X if, and only if, it does not contain the empty set and:
In mathematical notation, these two conditions can be represented as
where is the empty set. The elements of P are called the blocks, parts or cells of the partition.[1]
For any equivalence relation on a set X, the set of its equivalence classes is a partition of X. Conversely, from any partition P of X, we can define an equivalence relation on X by setting x ~ y precisely when x and y are in the same part in P. Thus the notions of equivalence relation and partition are essentially equivalent.[2]
Any partition α of a set X is a refinement of a partition ρ of X—and we say that α is finer than ρ and that ρ is coarser than α—if every element of α is a subset of some element of ρ. Informally, this means that α is a further fragmentation of ρ. In that case, it is written that α ≤ ρ.
This finer-than relation on the set of partitions of X is a partial order (so the notation "≤" is appropriate); it is a complete lattice. For the simple example of X = {1, 2, 3, 4}, the partition lattice has 15 elements and is depicted in the following Hasse diagram.
Another example illustrates the refining of partitions from the perspective of equivalence relations. If D is the set of cards in a standard 52-card deck, the same-color-as relation on D – which can be denoted ~C – has two equivalence classes: the sets {red cards} and {black cards}. The 2-part partition corresponding to ~C has a refinement that yields the same-suit-as relation ~S, which has the four equivalence classes {spades}, {diamonds}, {hearts}, and {clubs}.
A partition of the set N = {1, 2, ..., n} with corresponding equivalence relation ~ is noncrossing provided that there are no distinct numbers a, b, c, and d in N with a < b < c < d for which a ~ c and b ~ d. The lattice of noncrossing partitions of a finite set has recently taken on importance because of its role in free probability theory. These form a subset of the lattice of all partitions, but not a sublattice, since the join operations of the two lattices do not agree.
The total number of partitions of an n-element set is the Bell number Bn. The first several Bell numbers are B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, and B6 = 203. Bell numbers satisfy the recursion
and have the exponential generating function
The number of partitions of an n-element set into exactly k nonempty parts is the Stirling number of the second kind S(n, k).
The number of noncrossing partitions of an n-element set is the Catalan number Cn, given by